Fuel Cells for Unmanned Systems Propulsion

Paul Osenar, President
January 26th, 2016
Value Proposition
Fuel Cells for Unmanned Systems

Fuel Cell Power Systems can augment traditional propulsion and auxiliary power systems → Increasing platform performance and utility

• Fuel Cell vs. Battery Systems
 o Fuel cells provide significant improvement in energy density (2-5x LiPO batteries)
 o Extend mission times and provide more data to the user

• Fuel Cell vs. Internal Combustion Engines
 o Fuel cell system provide more reliable performance than ICE (MBTF improvements of >5x)
 o Lower operational costs and better platform reliability

Takeaways:
 o Fuel cells will be instrumental in the second wave of UxV applications
 o Fuel cells can improve:
 • Persistence
 • Operating costs
 o Integration of the power systems is key to maximize results
 o Protonex / Ballard can provide design guidance to full systems manufacturer
 • Includes stacks, fuel subsystems, power electronics and controls
Protonex Unmanned Systems Experience

• Protonex PEMFC systems have strong unmanned system heritage:
 o More than a decade of development
 o Implementation on multiple platforms and customers
 o 100’s of hours of accumulated flight time
 o 3 active UAV power system development projects

• Leverage several key Protonex technologies:
 o Power dense PEM fuel cell stacks
 o High utilization (>99%) H₂
 o Energy dense SBH fuel cartridges
 o Efficient power management electronics
Protonex PEM Fuel Cell Technology

- **Power dense PEM fuel cell stacks**
 - Adhesively bonded construction
 - Rugged and highly durable
 - Liquid cooled, closed cathode design
 - MEA agnostic

- **Specialized stack design for UAV systems**
 - Compact and lightweight
 - Demonstrated designs up to 1.5 kW
 - Up to 100 kW with Ballard technology
 - Specific power > 1,400 W/kg
Complete PEM Fuel Cell Power Systems

- **SBH systems targeted to Group 1 UAS (<20 lb)**
 - Provide 2-3x specific energy of LiPo battery
 - Dramatic improvement in persistence of the platform
 - Single-use fuel cartridges
 - Hybridized with LiPo battery for power bursts

- **Compressed/liquid H₂ systems for Group 2 UAS (21-55 lb)**
 - Low acoustic signature relative to IC engines
 - Exceptional throttle control
 - Reduced maintenance
 - Reduced operational cost

SBH UAV Power System
350 W w/ Peaking Capability

550 W Compressed H₂ UAV Power System
Unmanned Aerial Systems Applications

• **550 W UAV Power System**
 o Designed for compressed/liquid H₂ systems
 o Demonstrated >99% H₂ utilization
 o Total mass = 1 kg (fuel cell, BOP, and electronics)

• **Powers Naval Research Lab (NRL) Ion Tiger platform**
 o 1,100 Wh/kg and 24 hr endurance on compressed H₂
 o 48 hr endurance on liquid H₂

• **Powers NRL Sea Robin/XFC platform**
 o First submarine launched UAV
1.2 kW UAV Fuel Cell Power System Overview

- Targeted for application to Group II UAS (9.5 – 25 kg)
- Designed for operation on compressed/liquid H₂
- >4x energy density of secondary batteries
- System benefits relative to IC engines:
 - Low acoustic signature
 - Exceptional throttle control
 - Reduced maintenance
- Powers Insitu ScanEagle platform
 - Ground testing completed 2016
 - Gaseous/liquid H₂ supply system
 - 8-10 hr target flight time

© 2016 Protonex Technology Corp. All Rights Reserved.
Sodium Borohydride Fueling Solutions

- **Safe, low cost chemical hydride**
 - Non-flammable
 - Non-toxic

- **High storage metrics**
 - Aqueous solution, SG = 1.0
 - 0.045-0.064 gH₂/g Solution

- **Hydrogen as needed**
 - Fast start-up
 - Rapid load following
 - Reliable control

Typical SBH System Flow Diagram

© 2016 Protonex Technology Corp. All Rights Reserved.
800 W UAV Fuel Cell Power System Overview

- Targeted for application to Group I UAS (<9.5 kg)
- Designed for operation on sodium borohydride (SBH) cartridges
- >2x energy density of secondary batteries
- Fully hybridized with LiPo battery for power bursts

- Powers Lockheed Martin Desert Hawk EER platform
 - Hand launchable UAS
 - >6 hr flight time demonstrated

Power Management Scheme

- DC/DC Converter
- Power Combiner
- Battery Interface
- Multiple Power Output Paths
- Fuel Cell
- Secondary Battery

Lockheed Martin
Desert Hawk EER
Air Independent Fuel Cells

- Protonex PEM stacks designed for pure Oxygen
 - Tailored flow channels

- 1 kW Benchtop demonstrator
 - >99% H₂ utilization
 - >99% O₂ utilization

- Protonex has focused on Unmanned Underwater System
 - Leveraging O₂ from hydrogen peroxide (H₂O₂) decomposition
 - Leveraging H₂ from sodium borohydride (SBH) decomposition
 - 2-3x increase over existing systems
 - estimated to provide >350 Wh/L

- Stack and systems suitable for high altitude energy storage

1.5 kW H₂/O₂ Stack

6” x 5” x 4”
15 x 13 x 10 cm
Summary

- Ballard / Protonex has over a decade of UxV experience

- Capability to design and manufacture fuel cell power systems for UxV from 100 W to 100 kW
 - Propulsion, auxiliary power, sensors
 - Hand launched UAVs to commercial APUs

- Takeaways:
 - Fuel cells will be instrumental in the second wave of UxV applications
 - Fuel cells can improve:
 - Persistence
 - Operating costs
 - Integration of the power systems is key to maximize results
 - Protonex / Ballard can provide design guidance to full systems manufacture
 - Includes stacks, fuel subsystems, power electronics and controls

© 2016 Protonex Technology Corp. All Rights Reserved.